A molecular timetable for apical bud formation and dormancy induction in poplar.
نویسندگان
چکیده
The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.
منابع مشابه
A Conserved Carbon Starvation Response Underlies Bud Dormancy in Woody and Herbaceous Species
Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain de...
متن کاملPoplar as a Tree Model for Horticulture and Beyond: a Case Study of Genome-Scale Changes in Gene Expression during Bud Entry and Release from Dormancy
With the available genomic sequence and other experimental attributes, poplar has emerged as a leading candidate to study traits specific to woody perennial plants. Genomic and molecular knowledge gained from studies related to flowering, stem development, tree architecture, phenology and dormancy can be extended readily to woody species in forestry and horticulture. As an example of the value ...
متن کاملComprehensive Transcriptome Analyses Reveal Differential Gene Expression Profiles of Camellia sinensis Axillary Buds at Para-, Endo-, Ecodormancy, and Bud Flush Stages
Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To discover the bud dormancy regulation mechanism of tea plant in winter, we analyzed the global gene exp...
متن کاملA roadmap of apical bud formation in white spruce identifies potential regulators of time to bud set
Background Bud development is an adaptation that temperate forest trees have acquired to survive inclement winter conditions and resume growth the following spring. Bud development is a complex physiological and developmental process comprising bud formation, cold and desiccation tolerance development, and dormancy acquisition [1]. Because bud formation is accompanied by growth cessation, the t...
متن کاملEpigenetic regulation of bud dormancy events in perennial plants
Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2007